
N88-23258

PARAFRASE RESTRUCTURING OF FORTRAN CODE FOR PARALLEL PROCESSING*

Atul Wadhwa

Sverdrup Technology, Inc.

(Lewis Research Center Group)
NASA Lewis Research Center

ABSTRACT

Because of the existence of large and cumbersome computer codes, there is a

need to find new and more efficient ways of performing structural computations.

Today, there is a heavy emphasis on emerging parallel processing methods. A

research effort is in progress at NASA Lewis to develop these methods to reduce

time and cost of program execution. Restructuring FORTRAN codes to take advan-

tage of parallel processing architecture is a part of this effort. An auto-

matic code restructurer, Parafrase, is used to meet th{s effort. Parafrase,

developed at the University of Illinois, transforms a FORTRAN code, subroutine

by subroutine, into a parallel code for a vector and/or shared-memory multi-

processor system. Parafrase is not a compiler; it transforms a code and pro-

vides information for a vector or concurrent process.

Parafrase uses a data dependency to reveal parallelism among instructions.

The data dependency test distinguishes between recurrences and statements that

can be directly vectorized or parallelized. A number of transformations are

required to build a data dependency graph.

The purpose of this presentation is to give an overview of the Parafrase

restructuring approach. Specifically, key aspects of the Parafrase program

(such as data dependence tests and machine-dependent transformations) will be
discussed.

*Work performed on-site at the Lewis Research Center for the Structural

Dynamics Branch.

1-431

ELEMENTS OF PARALLEL PROCESSING

Some current computer software packages written in sequential codes (i.e.,

existing FORTRAN) have an undesirable turnaround time. Parallel processing

can minimize execution time by employing vector or concurrent events in the

computing process. The most common terms characterizing parallel processing

are vector and multiprocessing.

In vector processing a loop can be vectorized if each statement of the loop

can be executed for the entire index set of the loop before executing the next

statement and producing the same result. Multiprocessing refers to a system

with two or more processors. There are basically two types of multiprocessing

systems, a shared-memory system and a message-passing system. In the shared-

memory system, all the processors exchange information through the shared-

memory; while in the message-passing system, each processor has its own private

memory, and each can communicate and synchronize with others through some net-

work connection.

PARALLEL PROCESSING

PIPELINEPROCESSING MULTIPROCESSING

VECTOROPERATION SHARED- OR DISTRIBUTED-MEMORY
SYSTEM SYSTEM

CD-88-31937

VECTOR PROCESSING

SERIAL PROCESS

DO 10 I = 1,N

A(I) = a(I) + C(I)

e(I) = N'C(I)

10 CONTINUE

VECTOR PROCESS

A(I:N) = B(I:N) + C(I:N)

B(I:N) = N*C(I:N)

MULTIPROCESSING

MEMORYMODULES

INTERCONNECTINGNETWORK [

__
SHARED-MEMORYSYSTEM

INTERCONNECTINGNETWORK

MESSAGE-PASSINGSYSTEM

CD-88-31938

1-432

PARAFRASE: AN AUTOMATIC CODE RESTRUCTURER

Parafrase is a restructuring tool that transforms a code, subroutine by sub-

routine, to take advantage of the parallelism available in a particular machine

(Kuck et al., 1984). Parafrase accepts an input program in FORTRAN, analyzes

its data dependency, then targets the detected parallelism on vector processor

(Single Execution Array (SEA)) or multiprocessor (Multiple Execution Scalar

(MES)). To determine if a loop can be parallelized, Parafrase builds a graph

of the data dependencies; the nodes represent program statements and the edges

represent data and control dependencies. Parafrase output is useful in analyz-

ing and evaluating parallel programs.

I FORTRAN I

CODE OPTIMIZATION
FOR

DATA DEPENDENCY TEST

MACHINE-DEPENDENT
OPTIMIZATION

SINGLE EXECUTION ARRAY MULTI EXECUTION SCALAR

CD-88-31939

1-433

DATADEPENDENCYTEST

Detecting parallelism in a code requires data dependency testing, which reveals
information about data computation and use in the program. The data dependency
test determines whether or not a statement uses a value that was computedon
previous iteration. There are four types of dependencies: flow, antidepend-
ence, output dependence, and control dependence (Wolfe, 1982). These depend-
encies must be considered to detect recurrences.

$1: A(I) = B(I) + C(I)

$2: D(I)= A(I) + 5

$3: C(I + 1) = A(I) + B(I)

$4: IF D(I) > 10 THEN

$5: C(I + 1) = B(I) + 5

< FLOW DEPENDENCE

ANTIDEPENDENCE

OUTPUT DEPENDENCE

.----C

CONTROL DEPENDENCE

CD-88-31940

1-434

TRANSFORMATIONFORDATADEPENDENCETEST

Parafrase uses a data dependency test to detect parallelism. A number of
machine-independent passes are required to build an effective data dependency
graph. Someof the important passes are as follows: DOloop normalization,
induction variable substitution, statement forward substitution, and dead-code
elimination.

A NUMBER OF TRANSFORMATIONS ARE REQUIRED TO BUILD A DATA DEPENDENCY
GRAPH. THESE TRANSFORMATIONS ARE MACHINE-INDEPENDENT TRANSFORMATIONS.
SOME OF THE IMPORTANT PASSES ARE

1. DO-LOOP NORMALIZATION

2. INDUCTION VARIABLE SUBSTITUTION

3. STATEMENT FORWARD SUBSTITUTION

4. DEAD-CODE ELIMINATION

CD-88-31941

1-435

DOLOOPNORMALIZATION

The first of machine-independent passes is the DO-loop normalization (Polychro-
nopolus, 1986). A DOloop normalization transforms loops in such a way that
the induction variables of each loop increase by one, starting from one, to
someupper bound. Every old induction variable within the loop is replaced by
the new induction variable.

ORIGINAL CODE

DO 20 I = 1,100

NI=I

DO 10 J = 1,.100,3

NI=NI+2

X(J) = Y(J)*Z(NI)

Y(J + 1)= Y(J) + Z(NI)

X(J) = X(J) + Y(J)

10 CONT

20 CONT

REVISED CODE #1

DO 20 I = 1,100

NI=I

DO 10 J = 1,(100 + 2)/3

NI=NI+2

X(J*3 - 2) = Y(J*3 - 2)*Z(NI)

Y((J*3 - 2) + 1) = Y(3*J - 2) + Z(NI)

X(J*3 - 2) = X(J*3 - 2) + Y(J*3 - _2)

10 CONT

20 CONT

CD-88-31942

1-436

INDUCTIONVARIABLESUBSTITUTION

Induction variables are used inside loops to simplify subscripts to linear
functions of loop index variables. Detection and elimination of these vari-
ables reduce the number of operations. This transformation mayalso allow vec-
torization and parallelization of the loop, which would have been impossible
because of the dependencecycle (when two statements are closely coupled).
The discovery of induction variables is required since the data dependency
test needs the array subscripts to be in terms of the loop index variables.

REVISED CODE #1 REVISED CODE #2

DO 20 I = 1,100

NI=I

DO 10 J = 1,(100 + 2)/3

NI = NI + 2

X(J*3 -2) = Y(J_*3- 2)*Z(NI)

Y((J*3- 2)+ 1)= Y(3*,J- 2)+ z(m)

X(J*3- 2) = X(J*3- 2) + Y(J*3 - 2)

10 CONT

20 CONT

DO20 I = 1,100

NI=I

DO 10 J = 1,(100 + 2)/3

NI = I + 2*J

X(J*3 - 2) = Y(J*3 - 2)*Z(NI)

Y((J*3 - 2) + 1) = Y(3*J - 2) + Z(NI)

X(J*3 - 2) = X(J*3 - 2) + Y(J*3 - 2)

10 CONT

20 CONT

CD-88-31943

1-437

STATEMENT FORWARD SUBSTITUTION

A statement forward substitution replaces integer expressions and constants

into subscripts. A scalar variable that is assigned a value, and is used in

subscript, is replaced by an expression. The statement forward substitution

eliminates the need for compiler or user temporaries. This transformation

provides more information for the data dependency test.

a

REVISED CODE #2

DO 20 I= 1,100

NI=I

DO 10 J = 1,(100 + 2)13

NI = I + 2*J

X(J*3 - 2) = Y(J*3 - 2)*Z(NI)

Y((J*3 - 2) + 1) = Y(3*J - 2) + Z(NI)

X(J*3 - 2) = X(J*3 - 2) + Y(J*3 - 2)

10 CONT

20 CONT

REVISED CODE #3

DO 20 I = 1,100

NI=I

DO 10 J = 1,(100 + 2)13

NI = I + 2*J

X(J*3 - 2) = Y(J*3 - 2)*Z(I + 2*J)

Y((J*3 - 2) + 1) = Y(3*J - 2) + Z(I + 2*J)

X(J*3 - 2) = X(J*3 - 2) + Y(J*3 - 2)

10 CONT

20 CONT

CD-88-31944

1-438

DEAD-CODEELIMINATION

The dead-code elimination removes the statements whose output is never used.
This transformation reduces the numberof computations by eliminating unneces-
sary calculations. These transformations convert as manysubscripts as pos-
sible to a linear function of DOloop induction variables.

REVISED CODE #3

DO 20 1= 1,100

NI=I

DO 10 J = 1,(100 + 2)/3

NI = I + 2*J

X(J*3 - 2) = Y(J*3 - 2)*Z(I + 2*J)

Y((J*3 - 2) + 1) = Y(3*J - 2) + Z(I + 2_)

X(J*3 - 2) = X(J*3 - 2) + Y(J*3 - 2)

i0 CONT

20 CONT

REVISED CODE #4

DO20 I = 1,100

DO 10 J = 1,(100 + 2)13

X(J*3 - 2) = Y(J*3 - 2)*Z(I + 2*J)

Y((J*3 - 2) + 1) -- Y(3*J - 2) + Z(I + 2*J)

X(J*3 - 2) = X(J*3 - 1) + Y(J*3 - 2)

10 CONT

20 CONT

CD-88-31945

1-439

VECTORIZATION AND PARALLELIZATION

After building the data dependency graph, Parafrase starts restructuring a code

from serial to parallel form. If the data dependency relation prevents loop

vectorization or parallelization, then several machine-dependent transforma-

tions on the loop would be attempted. Loop interchanging and loop fission are

two of the important passes.

AFTER BUILDING A DATA DEPENDENCY GRAPH, PARAFRASE STARTS TO RESTRUCTURE
THE PROGRAM FROM SERIAL TO PARALLEL FORM. FOR THESE TRANSFORMATIONS A

NUMBER OF PASSES ARE TARGETED FOR A VECTOR (SINGLE EXECUTION ARRAY) OR
A MULTIPROCESSOR (MULTI-EXECUTION SCALAR) SYSTEM. TWO OF THESE PASSES ARE
AS FOLLOWS:

1. LOOP INTERCHANGING

2. LOOP FISSION

a) INSIDE-OUT LOOP DISTRIBUTION

b) DO-LOOP SPREADING

CD-88-31850

1-440

LOOPINTERCHANGING

The first transformation is loop interchanging, a switching of inner and outer
loops. Loop interchanging maybe used to vectorize the inner loop or to paral-
lelize the outer loop. Loop interchanging is impossible when two or more
statements of the loop are dependent with "<" and ">" directions.

REVISED CODE #4 REVISED CODE #5

DO 20 I = 1,100

DO 10 J = 1,(100 + 2)13

X(J*3 - 2) = Y(J*3 - 2)*Z(I + 2*J)

Y((J*3 - 2) + 1) = Y(3*J - 2) + Z(I + 2*J)

X(J*3 - 2) = X(J*3 - 1) + Y(J*3 - 2)

10 CONT

20 CONT

DO 10 J = 1,102/3

DO 20 I = 1,100

X(J*3 - 2) = Y(J*3 - 2)*Z(I + 2*J)

Y((J*3 - 2) + 1) = Y(3*J - 2) + Z(I + 2*J)

X(J*3 - 2) = X(J*3 - 1) + Y(J*3 - 2)

20 CONT

10 CONT

CD-88-31951

1-441

INSIDE-OUTLOOPDISTRIBUTION

Someloops can be divided into two or more loops, a process knownas loop fis-
sion. If the statement forward substitution does not remove the data depend-
ence cycle, then the loop fission maybe allowed to vectorize or parallelize a
part of the loop. Inside-out loop distribution is used for the case of the
vector operation machine (Allen and Kennedy, 1982), and Doall Loop Distribu-
tion is used for the multiprocess machine.

REVISED CODE #4

DO 20 I = 1,100

DO 10 J = 1,(100 + 2)/3

X(J*3 - 2) = Y(J*3 - 2)*Z(I + 2*J)

Y((J*3 - 2) + 1) = Y(3*J - 2) + Z(I + 2*J)

X(J*3 - 2) = X(J*3 - 2) + Y(J*3 - 2)

10 CONT

20 CONT

FINAL REVISED VECTOR CODE

DO 20 J = 1,100

DO 10 I= 1,102/3

X(J*3- 2)= Y(J*3- 2)*Z(I + 2*J)

10 CONT

DO 10 J = 1,102/3

Y((J*3 - 2) + 1) = Y(3*J - 2) + Z(I + 2*J)

X(J*3 - 2) = X(J*3 - 1) + Y(J*3 - 2)

20 CONT

10 CONT

CD-88-31953

1-442

DOALLLOOPDISTRIBUTION

Doall loop distribution for a multiprocessor machine is a spreading of the
loop iteration across multiple processors. This transformation detects if
each loop iteration can be executed independently of the others.

REVISED CODE//5

DO 10 J = 1,102/3

DO 20 I = 1,100

X(J*3 - 2) = Y(J*3 - 2)*Z(I + 2*J)

Y((J*3 - 2) + 1) = Y(3*J - 2) + Z(I + 2*J)

X(J*3 - 2) = X(J*3 - 1) + Y(J*3 - 2)

10 CONT

20 CONT

FINAL REVISED CONCURRENT CODE

DOALL30 J = 1,102/3

DO 10 I = 1,100

X(J*3 - 2) = Y(J*3 - 2)*Z(I + 2*J)

X(J*3 - 2) = X(J*3 - 1) + Y(J*3 - 2)

10 CONT

30 CONT

DOALL 30 J = 1,102/3

DO 20 I = 1,100

Y((J*3 - 2) + 1) = Y(3*J - 2) + Z(I + 2*J)

20 CONT

30 CONT

CD-88-31955

1-443

APPLICATION

Parafrase was used to restructure a rotor dynamics SOLVE subroutine, as well
as initialization INIT subroutine. The estimate of speedup values has been

computed by Parafrase. The restructured subroutines were executed on CFT, a

CRAY compiler, which detected more vector operations than the original code.

SPEEDUP COMPARED WITH NUMBER OF VECTOR PROCESSORS

-- 4 m

SPEEDUP
(Sp)

SEQUENTIAL 1

I I I I I I I
5 10 15 20 25 30 35 0

NUMBER OF PROCESSORS(p)

ROTORRUB DYNAMICS

(SOLVEROUTINE)

I m
m

VECTOR
SEQUENTIAL

I I I I I I I
5 10 15 20 25 30 35

NUMBEROF PROCESSORS(p)

ROTOR RUB DYNAMICS

(INIT ROUTINE)

CD-88-31957

SPEEDUP COMPARED WITH NUMBER OF MULTIPROCESSORS

16

12
SPEEDUP

(Sp) 8

4
_ CONCURRENT

SEQUENTIAL

--t'--_--t--t--t---t- I
5 10 15 20 25 30 35

NUMBEROF PROCESSORS(p)

ROTORRUB DYNAMICS

(SOLVEROUTINE)

4

3

2

1

i

CONCURRENT
SEQUENTIAL

I I I I I I I
5 10 15 20 25 30 35

NUMBEROF PROCESSORS(p)

ROTOR RUB DYNAMICS

(INIT ROUTINE)

CD-88-31958

1-444

SPEEDUPOFA RESTRUCTUREDCODE

Kuck, et al., has applied Parafrase to EISPACKsubroutines, an eigenvalue/
eigenvector conjecture. After restructuring them, Parafrase calculated the
speedup values of subroutines.

SPEEDUPVALUESOBTAINEDBY KUCK'S
GROUP ON EISPAK

SUBROUTINENAME

ELMBAK
ELMHES
ETRAN
TRED1
TRED2
CBABK2
COMBAK
CORTB
CORTH
BANDV

NUMBEROF
PROCESSORS,

32

31.9
31.7
29.3
31.0
18.3
30.0
31.9
32.0
32.0
'Zl
vl.O

NUMBEROF
PROCESSORS,

256

242.0
33.6
71.3

235.0
36.5
53.5

248.5
254.0
252.0
98.0

NUMBEROF
PROCESSORS

2048

668.0
33.6
84.5

240.0
39.5
57.4

721.0
1250.0
501.0
98.0

.J

CD-88-31959

1-445

SUMMARY

Most existing code compilers take advantage of parallel processing, but don't

perform code restructuring. To achieve effective and efficient use of parallel

processing architecture, existing codes have to be restructured. Parafrase is

a FORTRAN code-restructuring tool. It is not a compiler. It produces informa-

tion for vector or shared-memory processing systems. Parafrase has been

applied to subroutines of the Rotor Rub Dynamics code. The restructured out-

put code has been executed on a CRAY compiler, which found more vector opera-

tions than the original code.

• TO ACHIEVE FAST EXECUTION RESTRUCTURING OF A SEQUENTIAL CODE IS NEEDED
FOR PARALLEL PROCESSING

• PARAFRASE CAN BE USED AS A RESTRUCTURING TOOL

• PARAFRASE OPTIMIZES A CODE FOR THE DATA DEPENDENCY TEST

• THE OUTPUT OF PARAFRASE CAN BE MODIFIED FOR VECTOR OR SHAREDMEMORY

ARCHITECTURE

CD-88-31956

1-446

REFERENCES

Allen, J.R., and Kennedy, K., 1982, PFC: A Program to Convert Fortran to Par-
allel Form, Report MASC-TR82-6.Rice Univ., Houston Texas.

Kuck, D.J. et al., 1984, "The Effect of ProgramRestructuring, Algorithm
Change, and Architecture Choice on ProgramPerformance," proceedings of

the 1984 International Conference on Parallel Processing, R.M. Keller,

ed., IEEE, New York, pp. 129-138.

Kuck, D.J., 1978, The Structure of Computers and Computations, John Wiley and

Sons, New York.

Leu, J.S., Agrawal, D.P., and Mauney, J., 1987, "Modeling of Parallel Software

for Efficient Computation-Communication Overlap," to be published.

Midkiff, S.P., and Padua, D.A., 1986, "Compiler Generated Synchronization for

Loops," Proceedings of the 1986 International Conference on Parallel Pro-

cessing, K. Hwang, S.M. Jacobs, and E.E. Swartzlander, eds., IEEE, New

York, pp. 544-551.

Padua, D.A., Kuck, D.J., and Lawrie, D.H., 1980, "High-Speed Multiprocessors

and Compilation Techniques," IEEE Transaction on Computers, Vol. 29,

No. 9, pp. 763-776.

Polychronopolus, C.D., and Banerjee, U., 1986, "Speedup Bounds and Processor

Allocation of Parallel Programs on Multiprocessor Systems," Proceedings of

the 1986 International Conference on Parallel Processing, K. Hwang,

S.M. Jacobs, and E.E. Swartzlander, eds., IEEE, New York, pp. 554-551.

Wolfe, M.J., 1982, "Optimizing Supercompilers for Supercomputers," Ph.D. The-

sis, University of Illinois at Urbana-Champaign, Illinois.

1-447

